Events

Events Calendar

Download as iCal file
Professor Dorthe Eisele
Tuesday, January 21, 2020, 11:00am - 12:00pm
 

Dorthe EiseleA Paradigm Shift Inspired by Nature:A Paradigm Shift Inspired by Nature:Robust Frenkel Excitons Despite Extreme Heat Stress

The future of sustainable energy technologies requires not only highly efficient but also robust light-harvesting (LH) materials, especially as rising global temperatures (i.e. increase of extreme weather events such as excessively high temperatures) threaten the efficiency of existing photovoltaic installations. Unlike current solar energy conversion technologies, natural photosynthetic organisms1 have clearly evolved beyond these challenges, capturing and transporting solar energy robustly and efficiently even under extreme environmental stress. Within photosynthetic organisms, delocalized Frenkel excitons—coherently-shared excitations among chromophores—are responsible for the remarkable efficiency of supramolecular LH assemblies. Clearly, supramolecular assemblies are Nature’s most successful mate-rial system for solar energy harvesting. However, the persistent limitations in translating nature’s design principles for applications in optoelectronic devices have been (1) the supramolecular structures’ fragility, and the Frenkel excitons’ delicate nature, especially (2) under elevated temperatures and (3) upon deposition onto solid substrates.

In my talk, I will present proof-of-concept that the intrinsic barriers towards functionalization of supra-molecular assemblies can finally be overcome; through in situ cage-like scaffolding of individual supra-molecular LH nanotubes2, we designed highly stable supramolecular nanocomposites3 with discretely tunable (~4.7-5.0 nm), uniform (±0.3 nm), cage-like scaffolds. High-resolution cryo-TEM, spectroscopy, and near-field scanning optical microscopy (NSOM) revealed supramolecular excitons within cage-like scaffolds are robust, even under extreme heat-stress. Complementary substrate studies on prototype dye-sensitized solar cells showed that our nanocomposites’ precise scaffold tunability in-solution was also maintained upon immobilization onto a solid substrate. Together, these results indicate that our novel supramolecular nanocomposite system is a successful, critical first step towards the development of practical bio-inspired LH materials for solar-energy conversion technologies as well as a basis for future fundamental investigations that were previously not possible, such as dilution of supramolecular assemblies required for single-molecule imaging or precise tunability of scaffold dimensions for controlled functionalization of hybrid model systems, i.e., plexcitonic systems.

[1]Orf, G.S. and Blankenship, R.E., Photosynth. Res., 2013; Scholes, G.D., et al. Nature Chem., 2011; [2] Eisele et al., Nature Chem. 2012; Eisele et al., JACS 2010; Eisele et al., Nature Nanotech. 2009; Eisele et al., PNAS 2014 [3] Eisele et. al. submitted, under review.

~ Coffee/tea will be served prior to lecture~

Location CCB Auditorium (1303)
Hosted by Professor Sagar Khare