Trap passivation of 4H-SiC/SiO₂ interfaces by nitrogen annealing

AFFILIATIONS
1 Department of Physics, Auburn University, Auburn, Alabama 36849, USA
2 Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
3 Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

ABSTRACT

We report an N₂ based annealing treatment to passivate interface traps (Dit) in n- and p-type 4H-SiC. The process has the potential to replace the commonly used hazardous and expensive gas nitric oxide (NO). N₂ postoxidation annealing reduces Dit in both the upper and lower halves of the 4H-SiC bandgap, with a greater impact at the valence band edge. N₂ annealing at 1500 °C is observed to be more effective in passivating traps and positive fixed charges than NO annealing for p-type devices, whereas for n-type devices, the opposite is true. The breakdown voltages for these devices are found to be lower than that of NO annealed devices. X-ray photoelectron spectroscopy has been performed to estimate the nitrogen areal density at the interface. Dit is measured as a function of nitrogen areal densities in the near interfacial regions for the different processes. Theoretical analysis through density functional theory is consistent with the measured Dit profiles by showing the generation of additional states near the valence band edge due to increased nitrogen concentration. In addition to reporting the effect of N₂ annealing on both n- and p-type 4H-SiC, this work correlates the nitrogen areal densities at the interface to Dit and explains the difference in Dit characteristics with nitrogen areal density between n- and p-type interfaces.

I. INTRODUCTION

Silicon carbide (4H-SiC) is one of the leading wide bandgap semiconductors for high-power, high-temperature applications. Compared to silicon, 4H-SiC metal–oxide–semiconductor field effect transistors (MOSFETs) have much lower power dissipation, making them ideal for low-noise and high-efficiency all-electric vehicle drives, fast-charging stations, solar inverters, and much more. While these devices significantly improve the energy efficiency of next-generation power systems, 4H-SiC also offers additional functionality in the form of integrated circuits (ICs) at high temperatures (>300 °C). Lateral complementary metal–oxide–semiconductor (CMOS) IC technology in 4H-SiC is highly desired for large-scale integration due to its strong noise immunity and low static power consumption. Both n- and p-channel MOSFETs that can operate at high temperatures are required for this technology. Nevertheless, despite significant advances, the high density of interface states (Dit) at the 4H-SiC/SiO₂ interface inhibits 4H-SiC MOSFETs from realizing their full potential, by causing high channel resistance and low mobility.

Extensive gate passivation research has been conducted over the last decade to passivate Dit in 4H-SiC. Some passivation methods such as wet oxidations were only effective in reducing traps near the valence band edge (Eᵥ), but not effective for passivating traps near the conduction band edge (Eᶜ). Out of all passivation methods, postoxidation annealing in nitric oxide (NO) at high temperature turned out to be the most effective and the standard process for reducing Dit both near Eᶜ and Eᵥ. However, the disadvantages of using NO annealing, both economically and environmentally, cannot be ignored. Furthermore, NO annealing is known to cause threshold voltage instability and create oxide hole trapping in 4H-SiC MOSFETs. To find alternative solutions for toxic and expensive NO, earlier research, and more recently, Tachiki and Kimoto demonstrated that high temperature (1400–1600 °C) annealing in flowing nitrogen gas produces promising results for 4H-SiC MOSFET processing.
In particular, that work shows that nitrogen annealing provides a higher reduction of D_{it} near E_V as compared to D_{it} passivation near E_C.

We report physical measurements that correlate the nitrogen areal density of the near interfacial regions with D_{it} and try to explain the difference in D_{it} characteristics for the n- and p-type 4H-SiC/SiO$_2$ interfaces. For this purpose, postoxidation annealing at high temperature (1400–1500 °C) in flowing N$_2$ gas is conducted and D_{it} measurements are reported in comparison to NO. Nitrogen annealing is found to be more effective than NO annealing in reducing D_{it} near the valence band, while the opposite is true close to the conduction band edge, which is consistent with Ref. 18. N$_2$ also decreases the positive fixed charge at the interface of p-type 4H-SiC and SiO$_2$, as evidenced by the flatband voltage comparison between processes. The oxide breakdown voltage for the devices made with 1500 °C N$_2$ annealing was similar to that of NO annealed devices. Critical to this study are (1) the comparison of x-ray photoelectron spectroscopy (XPS) measurements of the actual areal density of nitrogen at the interface for different annealing processes and (2) density functional theory (DFT) calculations that show the generation of additional energy states near E_V due to higher nitrogen concentration.

II. EXPERIMENTS AND METHODS

In this work, metal–oxide–semiconductor (MOS) capacitors were fabricated on p-(N$_A$–N$_D$ = 6.2×10^{15} cm$^{-3}$) and n-type (N$_D$–N$_A$ = 2.0×10^{16} cm$^{-3}$) epitaxial layers on 4° off-axis (0001) Si-face oriented p- and n-type substrates, respectively. The oxide is grown thermally in a dry atmosphere at 1150 °C, at flowing oxygen.
gas at a rate of 500 SCCM, and some samples were subsequently subjected to postoxidation annealing (POA) for comparative studies of Dit. The thicknesses of the gate oxides for the n- and p-type capacitors were found to be ∼55 and ∼65 nm, respectively, by the capacitance–voltage (CV) method. The various samples are labeled according to the process as follows. "As-Ox" represents a sample without any POA. Samples called "NO_2" were annealed in nitric oxide (NO) at 1175 °C for 2 h with a flow rate of 500 SCCM. For high-temperature N_2 annealing, selected oxidized samples were annealed in flowing ∼99.99% N_2 at high temperatures (1400 °C, 1 h; 1450 °C, 1 h; and 1500 °C, 30 min or 1 h) at a flow rate of 3000 SCCM in a ceramic furnace. It is seen to increase the oxide thickness by ∼5 nm after N_2 annealing. After POA, ∼50 nm thick aluminum (Al) was evaporated on top of the samples to form gate metal on all the capacitors. Simultaneous high frequency (100 kHz)–low-frequency CV (HI-LO CV) measurement was performed to extract interface trap densities (Dit) for each process and compared at room temperature (27 °C) with reference to 1175 °C, 2 h NO annealing.

For XPS measurements, the SiO_2 dielectric layer was removed using buffered oxide etchant (BOE) 6:1 (6 parts by volume of 40% ammonium fluoride and 1 part by volume of 49% hydrofluoric acid, Sigma-Aldrich). Earlier measurements have shown that the buffered oxide etch does not remove interfacial nitrogen within the accuracy of the elemental probes, ∼10%. The XPS measurements were carried out using a monochromatic Al Kά x-ray source (K-Alpha, Thermo Scientific Inc.) with a flood gun for charge compensation. Spectra were calibrated against C1s from SiC (283.4 eV). During measurements, x rays with a spot size of 200 µm were focused on each sample and the normal direction of the sample surfaces was pointed to the analyzer.

III. RESULTS AND DISCUSSION

A. Electrical analysis

High frequency (100 kHz) CV curves are obtained for capacitors using different methods. Figure 1 shows the results for n- and p-type capacitors under different N_2 annealing conditions, compared with "As-ox" and "NO_2." For p-type capacitors, the CV curves clearly move to the right with the increase in the N_2 annealing temperature, reducing the flatband voltage due to the passivation of deep interface states and fixed charges. For 1500 °C...
annealing, the flatband voltage for p-type becomes less than NO annealing, which is definitely advantageous. On the other hand, with the increase in the annealing temperature, CV curves in n-type devices move slightly left and the 1500 °C process yields a similar flatband voltage as NO_2. Hysteresis increased with annealing temperature. Depending on the processes, the value of ΔV.fb (difference in flatband voltage) ranges from 0.2 to 0.7 V between the opposite directional CV sweeps.

Using simultaneous HI-LO CV measurements, shallow D.it profiles were extracted for states near the valence (Ev) and conduction band (Ec) edges as shown in Fig. 2. For p-type capacitors, a consecutive reduction in Dit is visible with the increase in the N2 annealing temperature, which is consistent with the decrease in V.fb. Among all the processes, 1500 °C, 30 min N2 yielded the minimum Dit value close to Ev. A lower Dit using N2 annealing could be a combined effect of higher temperature and lower nitrogen concentration at the p-type interface. However, for n-type capacitors, Dit near Ec was lower for NO annealing compared to N2, which is consistent with Ref. 18.

Current–voltage (I–V) characteristics were obtained to find the breakdown voltage of the capacitors fabricated with 1500 °C, 30 min N2 and were compared with the 2 h NO annealed samples as shown in Fig. 3. For both n- and p-type capacitors, the breakdown voltage was found to be lower than that of the NO annealed samples. The lower breakdown in the N2 curves might be due to the possible crystallization at higher temperatures. High-temperature N2 annealing, indeed, made the surface rougher as seen from AFM. For N2 annealed samples, the rms roughness is seen to be ~2.6 nm, whereas for samples without annealing, the roughness is ~1 nm. The value of the conduction band offset (barrier height) of the n-type capacitors is calculated, using Fowler–Nordheim tunneling, to be 2.42 and 2.26 eV for NO and N2 annealed capacitors, respectively, using the effective mass of electrons in oxide (m0x) 0.35 m, whereas for p-type capacitors, they are found to be 2.1 and 2.9 eV taking m0x for holes as 0.4 m. Here, m is the electrons’ rest mass in vacuum.

B. XPS analysis

To understand the interfacial chemistry of the high-temperature N2 annealed samples, x-ray photoelectron spectroscopy (XPS) was performed and compared with NO annealed samples. Figure 4 shows the N1s XPS spectra and the corresponding N areal density calculated using the method in Ref. 19 as shown in Table I. XPS measurement data show the amount of nitrogen at the interface for different processes. Both NO POA at 1175 °C and N2 POA at 1500 °C gave rise to the formation of silicon nitride (N-Si3 configuration) as indicated by N1s peaks at 398.2 eV (blue peaks), while

<table>
<thead>
<tr>
<th>Nitridation conditions</th>
<th>N1s binding energy of silicon nitride (N-Si3) (eV)</th>
<th>N1s binding energy of silicon oxynitride (N-Si2O) (eV)</th>
<th>N area concentration of silicon nitride (N-Si3) (10^14 cm^-2)</th>
<th>N area concentration of silicon oxynitride (N-Si2O) (10^14 cm^-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1175 °C, 2 h NO</td>
<td>398.2</td>
<td>399.7</td>
<td>3.9 ± 0.3</td>
<td>0.8 ± 0.1</td>
</tr>
<tr>
<td>1500 °C, 30 min N2</td>
<td>398.2</td>
<td>...</td>
<td>1.8 ± 0.1</td>
<td>...</td>
</tr>
<tr>
<td>1500 °C, 1 h N2</td>
<td>398.2</td>
<td>...</td>
<td>2.8 ± 0.1</td>
<td>...</td>
</tr>
</tbody>
</table>

FIG. 5. Dit near the conduction (left) and valence (right) band edge vs nitrogen concentration at the interface. Here, the 1400 °C N2 annealed sample is assumed to be the zero-nitrogen point, because the concentration of nitrogen at the interface for this sample is well below the XPS detection limit (<10^13 cm^-2).
the NO process also resulted in the formation of silicon oxynitride (N-Si$_2$O configuration) as indicated by the N1s peak at 399.7 eV (orange peak). The total N area density due to NO POA is $\sim 4.0 \times 10^{14}$ cm$^{-2}$, which is consistent with Ref. 19. The N areal density increased with further N$_2$ POA at 1500 °C and reached 2.8×10^{14} cm$^{-2}$ at 1 h, which is $\sim 40\%$ lower than that resulting from NO POA. Combined with the D_{it} results in Fig. 5, we can conclude that N-uptake by either process effectively reduces the interface trap density for both n-type and p-type SiO$_2$/SiC devices. However, when the N areal density $\geq 1.8 \times 10^{14}$ cm$^{-2}$, there can be negative correlations between N-uptake and the interface trap density for p-type devices, as explained later.

C. D_{it} vs nitrogen at the interface

The values of D_{it} near the E_C (at 3.0 eV) and E_V (at 0.2 eV) are plotted with respect to the nitrogen amount at the oxide-semiconductor interface as shown in Fig. 5. Here, the 1400 °C N$_2$ annealed sample is assumed to be the zero-nitrogen point, because the concentration of nitrogen at the interface for this sample is well below the XPS detection limit. It can be noted that with the increase in nitrogen, the value of D_{it} near E_C reduces continuously and reaches near saturation at 3×10^{14} cm$^{-2}$, whereas for the p-type interface, at least 1×10^{14} cm$^{-2}$ nitrogen density is required for the reduction in D_{it}. However, the value of D_{it} increases near E_V with the increased amount of nitrogen that can be seen from the 1175 °C NO point of the right-hand side of Fig. 5. The higher D_{it} with NO annealing compared to N$_2$ might be due to the effect of lower temperature annealing or associated with the additional generation of states near the valence band edge as suggested from the DFT calculations.

D. Theoretical analysis

To gain atomic level insight on the changes in the interfaces upon nitridation, we analyze the electronic properties of model systems using first principles calculations within the density functional theory (DFT). These systems correspond to nitrided 4H-SiC/SiO$_2$ interfaces that are perfectly coordinated (i.e., no dangling bonds), assuming the N-Si$_3$ configuration (where N binds to three Si atoms) previously found as prevalent in these systems. Nitridation has been shown to remove interfacial traps by passivating the Si-dangling bonds emerging at the SiO$_2$/4H-SiC interface because of silicon density reduction when transitioning between the semiconductor and oxide. Theoretical descriptions of these interfaces employed 3 × 3-unit cells of the 4H-SiC (0001) with different atomic arrangements near the interface, as illustrated in Fig. 6. Atomic cores are described with projector augmented wave (PAW) pseudopotentials, and exchange-correlation energy is parameterized by the Perdew–Burke–Ernzerhof (PBE) functional. The self-consistent field was obtained through integration over the Brillouin zone in a 6 × 6 × 1 Monkhorst-Pack k-point grid, as well as energy cutoffs were set to 60 and 500 Ry for wave functions and charge density, respectively. Atomic positions in the model interface supercells were determined through a structural relaxation until forces were lower than 0.01 eV/Å before band structures were obtained, employing the Quantum Espresso software.

Figure 6 shows the band structures near the valence band for interfaces with different nitrogen areal densities (1.3×10^{14}, 2.7×10^{14}, and 4.0×10^{14} cm$^{-2}$), comparable to those attained experimentally and nearly two orders of magnitude larger than

![Figure 6. Geometric and electronic structure of 4H-SiC/SiO$_2$ model interfaces with different nitrogen areal densities. (a) Geometric configuration of the different interfaces. Band structures (gray lines) near the valence band edge for these different interfacial models are presented with decomposition onto localized atomic orbitals denoted in color for the different elements of atoms near the interface: (b) carbon layer (blue); (c) top silicon layer in SiC (green); (d) oxygen states (red); and (e) nitrogen states (black) adjacent to the interface. Different columns denote the cases with different N areal densities (from left to right): 1.3×10^{14}, 2.7×10^{14}, and 4.0×10^{14} cm$^{-2}$.](image-url)
interface trap densities. To facilitate the comparison, Bloch states of the system (gray lines) are projected onto localized orbitals corresponding to atoms (C, Si, O, and N) residing near the interface. The results reveal the presence of states formed with nitrogen orbitals near the valence band edge. This feature, which is not observed near the conduction band edge (not shown here), is attributed to the lower electronegativity of nitrogen with respect to that of oxygen. Moreover, the energy position of these interface states moves closer to the band edge as the N areal density increases. Hence, these interface states originating from nitrogen may become active during device operation for p-type devices as nitridation levels reach their highest values.

These results suggest that nitridation may not be as beneficial for holes as it is for electrons because of the emergence of N-related interfacial states near the valence band edge. They also provide a qualitative explanation of the D\textsubscript{it} up tick near the valence observed for the NO process (Fig. 5), as this yields a significantly higher N concentration. We note that model systems in this work focus on Si\textsubscript{7–}N coordination; however, further atomistic studies may be needed to characterized other configurations (e.g., with different and less prevalent coordination of N such as Si\textsubscript{2}–N–O or Si–N–O\textsubscript{2} or N-related defects) to assess the impact of nitridation on p-type devices.

IV. SUMMARY

The effect of high-temperature N\textsubscript{2} postoxidation annealing in 4H-SiC n- and p-type MOS interfaces is investigated. 1500 °C N\textsubscript{2} annealing substantially reduces the positive fixed charge and interface traps near the valence band edge to a greater extent than for NO annealing, whereas for the n-type structures, similar D\textsubscript{it} levels are attained. The D\textsubscript{it} vs N areal density (measured by XPS) for n-type interfaces shows that the D\textsubscript{it} up tick near the valence observed for NO process (Fig. 5), as this yields a significantly higher N concentration. We note that model systems in this work focus on Si\textsubscript{7–}N coordination; however, further atomistic studies may be needed to characterized other configurations (e.g., with different and less prevalent coordination of N such as Si\textsubscript{2}–N–O or Si–N–O\textsubscript{2} or N-related defects) to assess the impact of nitridation on p-type devices.

ACKNOWLEDGMENTS

The authors acknowledge the support from the U.S. Department of Energy (subcontracted to National Renewable Energy Laboratory, Grant No. NREL-AHL-9-92632-01). The authors also acknowledge the expert support from Tamara Isacs-Smith of Auburn University for assistance with the instrumentation and the support of the Rutgers Laboratory for Surface Modification with respect to the XPS analysis.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Suman Das: Data curation (lead); Formal analysis (equal); Investigation (lead); Writing – original draft (lead). Hengfei Gu: Data curation (equal); Writing – original draft (equal). Lu Wang: Data curation (equal). Ayayi Ahyi: Project administration (equal); Writing – review & editing (equal). Leonard C. Feldman: Project administration (equal); Writing – review & editing (equal). Eric Garfunkel: Resources (equal). Marcelo A. Kuroda: Formal analysis (equal); Resources (equal); Software (lead); Writing – review & editing (equal). Sarit Dhar: Methodology (equal); Project administration (equal); Resources (equal); Supervision (equal); Writing – review & editing (lead).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

