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The papers assembled in this issue of ‘Bio-
logical Signals’ deal with eukaryotic initiation
factor 5A (eIF-5A), which exists in both euka-
ryotic cells and archaea, but not in bacteria.
This protein is the only cellular protein known
to contain hypusine. Nature has committed
two enzymes, deoxyhypusine synthase and
deoxyhypusine hydroxylase, to specifically
modify a single lysine residue of elF-5A into
hypusine, as illustrated in figure 1. This is no
small commitment from Nature. Indeed, all
the literature evidence indicates that elF-SA,
with its hypusine modification, is indispens-
able for cell survival and proliferation. As
noted by Cohen in this issue, the discovery of
the essentiality of hypusine in eukaryotic cells
has demonstrated a unique and essential role
for spermidine in the life of such cells, a fact
that is not yet found in texts of biochemistry

and cell biology. The highly conserved nature

of the elF-5A sequence from Methanococcus
Jannaschii to human (fig. 2), particularly near
the hypusination site, futher confirms the im-
portance of hypusine formation. What re-
mains mysterious is that we do not know the
cellular function of eIF-5A and the functional
significance of hypusine modification. It is
anticipated that, with most of the molecular
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Biochemistry and Function of
Hypusine Formation on Eukaryotic
Initiation Factor 5A

tools in hand, the cellular function of hypu-
sine and elF-5A will unfold in time.

Hypusine formation is one of the most spe-
cific polyamine-dependent biochemical reac-
tions. It is quite possible that some of the
important physiological functions of poly-
amines are mediated through hypusination of
elF-SA. With that in mind, Cohen provides a
succinct review of how the hypusine story
began over a quarter of a century ago, and
how, in the context of polyamine research, the
field has evolved since the early 80s.

Research progress related to hypusine and
elF-5A has been reviewed by Park et al. [1, 2]
in 1993. Since then, deoxyhypusine synthase
has been purified [3-5], genetic manipulation
of either the elF-SA or deoxyhypusine syn-
thase gene has become possible in yeast and
other organisms [6, 7], and a potent specific
inhibitor for deoxyhypusine synthase has be-
come available [8]. In this issue, Park et al.
review these and other new developments.
They also summarize some of their mechanis-
tic studies on the action of deoxyhypusine
synthase and functional analysis of this en-
zyme in the yeast system. Their work provides
definitive evidence that hypusine formation
correlates with cell proliferation.
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Fig. 1. Schematic diagram il-
lustrating hypusine formation on
elF-5A precursor (18 kD in yeast
and mammalian cells, 21 kD in
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Fig. 2. Alignment of eIF-5A amino acid sequences from 12 different species. Identical
amino acid residues are indicated with black solid bocks. Similar amino acids are shaded. The
alignment is adjusted for the best match. There are two eIF-5A ¢cDNA for chick and for tobac-

co, but only one for each species is
ment are indicated by a period.

\

One unexpected finding from Hauber’s
laboratory in 1993 has linked eIF-5A to the
action of the HIV-1 Rev protein. The finding
is significant not only because of its implica-
tion for AIDS therapy, but also because it sug-
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shown here. Except chicken, spaces introduced for align- -

gests a new avenue to probe the action of elF-
S5A. A series of papers has since come out of
the same group, demonstrating the involve-
ment of elF-5A in Rev action both in vitro
and in vivo. Bevec and Hauber review these
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studies and discuss some of their most recent
work using the yeast two-hybrid system to
search for the cellular targets of eIF-5A.

Using a different experimental approach,
work from Shida’s laboratory suggests that
elF-5A may interact with the HTLV-1 Rex
protein [10]. Their study has substantiated
the notion that eIF-5A may be involved in the
action of these retroviral proteins as Rex and
Rev are functionally interchangeable. Kiyoka-
wa et al. have now extended this finding and
demonstrate the presence of at least two dis-
tinct pathways for pre-mRNA processing.
They suggest that the eIF-5A protein is in-
volved in one of the pathways.

In contrast to these studies, Shi et al. [11]
have previously shown that elF-5A is pre-
dominantly localized in the cytoplasm. In this
issue, they present additional data which sug-
gest that eIF-5A does not shuttle between the
nucleus and cytoplasm in the way Rev does.
This is intriguing since colocalization of elF-
5A and Rev would be expected if elF-5A was
the cellular partner of Rev. Clearly, more
work is needed to sort out these discrepancies.
Thus, although the findings with Rev and Rex
are exciting, the overall picture may be com-
plicated. Currently, at least four or five differ-
ent cellular proteins, including eIF-5A, have
been reported in the literature to be the Rev-
binding protein.

The essentiality of hypusine in cell growth
also points toward its potential role in cell
death. Tome and Gerner summarize previous
studies on the role of polyamines in cell
growth and cell death. They argue that sup-
pression of elF-5A formation is the cause
for apoptosis in a hepatoma variant cell
line treated with either diaminoheptane or
DFMO withdrawal. Again, if elF-5A serves as
a critical member along the mitogenic signal-
ing pathway, its involvement in apoptosis
would not be a surprise. However, detailed
analysis of the downstream events from elF-
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5A suppression to apoptosis remains to be
performed.

Three groups have reported the purifica-
tion of deoxyhypusine synthase in 1995 [3-5].
The enzyme is a homotetramer, and the ami-
no acid sequence of the enzyme appears to be
highly conserved, particularly at the C-termi-
nal half (fig. 3). In this issue, Abid et al.
present data on the mutational analysis of
yeast deoxyhypusine synthase. They report
that repression of deoxyhypusine synthase
gene expression results in eIF-5A depletion. It
may be interesting to note that, when human
elF-5A was used as the bait in yeast two-
hybrid analysis, one of the most consistent
true-positive clones that we have identified is
deoxyhypusine synthase {Zhu, L. et al., un-
publ. results].

Liu et al. discuss their studies on the inter-
action of eIF-5A with HIV-1 (Rev response
element RRE) RNA and U6 snRNA. They
found that the deoxyhypusine- or hypusine-
modified eIF-5A, but not the elF-5A precur-
sor, exhibits RNA binding activity. They pro-
pose that eIF-5A may be a bimodular protein,
capable of both RNA and protein binding.
Since the interaction of eIF-5SA with RRE or
U6 RNA depends on the presence of deoxy-
hypusine or hypusine modification, RNA
binding, as measured by gel mobility shift
assay, may serve as an in vitro functional
assay for deoxyhypusine or hypusine forma-
tion.

Clearly, studies of hypusine in biological
systems are just beginning. For example, hy-
pusine in plant is an area largely unexplored
at this moment. Regulation of the metabolism
of eIF-5A has not been rigorously studied in
any system yet. The biochemistry and func-
tion of hypusine and eIF-5A in archaebacteria
has not been explored either. At the physio-
logical and clinical levels, we wonder what the
functional role of free hypusine and other
hypusine derivatives in tissue and body fluid
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Fig. 3. Alignment of deoxyhypusine synthase amino acid sequences from 6 different spe-
cies. Identical amino acid residues are shown with solid black blocks and conservative replace-

ment is shaded.

is. For example, we do not know why a high
level of hypusine excretion occurs in patients
with familial hyperlysinemia [12]. Nor do we
know whether GABA-hypusine discovered in
the brain [13] functions as a neurotransmitter.
Except for deoxyhypusine hydroxylase, which
has yet to be purified, the molecular tools for
studying the biochemistry and function of hy-
pusine formation are largely in place. Mean-
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while, the emphasis of hypusine research is
shifting from biochemistry to function. It re-
mains to be seen whether the Rev-RRE sys-
tem can serve as a useful model for probing
the cellular function of elF-5A. If indeed elF-
5A is a bimodular protein, it will be pertinent
to identify the target RNA and proteins of
elF-5A in order to understand its function.
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